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Plan for the Talk

I General motivation, quantum phase transitions, and strange
metals.

I Holographic electrons and the role of spin.

I The importance of spin-orbit coupling.
I Spin, damping, and black hole quasinormal modes.

work with my student Jie Ren



Quantum Phase Transition:
a phase transition between different quantum phases (phases of
matter at T = 0). Quantum phase transitions can only be
accessed by varying a physical parameter — such as magnetic field
or pressure — at T = 0.
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Figure: Phase diagram paradigm



Experimental relevance

Many important physical systems may have quantum critical
points (QCPs). The QCP has an effective field theory description
which continues to be valid at small “distances” away from the
QCP. This quantum critical region may be in an experimentally
accessible regime.
Examples:

I superfluid-insulator transition in thin films

I heavy fermion compounds

I high temperature, under-doped superconductors at T > Tc

I quark-gluon plasma

Systems for which T is the dominant scale.



Thin Films

Conductivity σ
σthick(T → 0) =∞
σthin(T → 0) = 0

Haviland, Liu, and Goldman,
Phys. Rev. Lett., 62, 2180
(1989)



High Tc Superconductors

I La2CuO4 is an
antiferromagnetic insulator

I 2d physics: The Cu atoms
arrange themselves into a
square lattice on separated
sheets.

I Hole doping: substitute
some of the La with Sr,
La2−xSrxCuO4

I The over doped region is
weakly interacting. The
under doped region is
strongly interacting.
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Linear Resistivity

I High Tc superconductors
exhibit a linear rise in the
resistivity for T > Tc in the
strange metal regime that has
eluded explanation.

I A Fermi liquid, i.e. a weakly
interacting system of
electrons, would not yield this
behavior.

I On the right is a plot for the
high Tc compound Bi-2201.

Martin, Fiory, Fleming, et al., Phys.
Rev. B41 846 (1990).



Heavy Fermions

I Heavy fermion compounds contain
rare earth elements that form a
lattice of localized magnetic
moments.

I A lattice version of the Kondo
effect gives the electrons a very
large effective mass.

I By tuning pressure, magnetic
fields or doping, one can produce
superconductivity, typically at very
low T .

I There is also a strange metal
region of the phase diagram.

The orange region has linear in T
resistivity. The blue region has T 2.
Custers, Gegenwart, Wilhelm et al.,
Nature 424, 524 (2003)



Comments about Scale Invariance

At the quantum critical point, the system is invariant under

t → λz t and x → λx .

where z is the dynamical critical exponent.

I The Lorentzian case z = 1:
I insulating quantum antiferromagnets (relevant for high Tc)
I Bose Hubbard-like models at p/q filling (optical lattices)

I The case z = 2 is more common (Galilean, Schrödinger, and
Lifshitz scaling symmetries)

I Other z , e.g. z = 3 for the heavy fermion compounds.

How do we analyze strongly interacting, scale invariant field
theories?



The role of AdS/CFT

The AdS/CFT correspondence provides a tool to study a class of
strongly interacting field theories with Lorentzian symmetry in d
dimensions by mapping the field theories to classical gravity in
d + 1 dimensions.

I equation of state

I real time correlation functions

I transport properties — conductivities, diffusion constants, etc.

The ambitious program: There may be an example in this class of
field theories which describes the quantum critical region of a real
world material such as a high Tc superconductor.

The less ambitious program: By learning about this class of field
theories, we may find universal features that could hold more
generally for QCPs (η/s = ~/4πkB).



The Basic Holographic Setup

S =
1

2κ2

∫
dd+1x

√
−g(R−2Λ)− 1

4g2

∫
dd+1x

√
−gFµνFµν +SΨ

I Assume a diagonal metric with radial coordinate z of the form

ds2 = gtt(z)dt2 + gxx(z)(dx2 + dy2 + . . .) + gzz(z)dz2 .

I The presence of a black hole horizon implies gtt(zh) = 0.
Hawking temperature of the black hole maps to the
temperature T of the field theory.

I The presence of an electric field implies At(z) 6= 0. Electric
field of the black hole maps to charge density ρ of the field
theory.

I We will probe the system with fermions Ψ; field theory from
solving the classical Dirac equation.



The Dirac equation revisited

SΨ = −i
∫

dd+1x
√
−g Ψ(γµDµ −m)Ψ

Dµ = ∂µ +
i

4
ωµ,abγ

ab − iqAµ,

In d = 3, the Dirac equation decouples into equations for the two
spin components ψ±:[√

−g ttσ2(ω + qAt) +
√
g zzσ3∂z ± i

√
g xxσ1k −m

]
ψ± = 0,

where e−iωt+ikxψ(z) = (− det(g)g zz)1/4Ψ.

From a holographic point of view, the game is to solve these
coupled differential equations.



Recent History

Much has already been done (numerically) with this system.

I Faulkner, McGreevy, Liu, Vegh et al. have shown that the
fermionic Green’s function at T = 0, ρ 6= 0 can exhibit
non-Fermi liquid properties.

I Control parameter ν =
√

m2 + k2 − µ2 where k is the
momentum and µ the chemical potential.

I ν > 1/2: Fermi liquid
I ν = 1/2: marginal Fermi liquid
I ν < 1/2: non-Fermi liquid
I ν imaginary: oscillatory region, fermions condense to form an

electron star Hartnoll et al.

I Non-Fermi liquid means a dispersion relation
ω ∼ (k − kF )1/2ν . For ν = 1/2, the contribution of the
fermions to the resistivity is linear in T .



Objections

The T → 0 limit is delicate.

I If there are additional scalar fields, they may condense at low
temperature (holographic superconductors) [Gubser, Hartnoll,
H, Horowitz].

I A four fermion interaction term can lead to a BCS phase
transition at low temperatures [Hartman and Hartnoll].

I For |m| < µ, a Fermi sea in the bulk modifies the geometry
(electron star) and leads to the usual Fermi liquid behavior
[Hartnoll et al].

I The non-Fermi liquid winds up in a small corner of available
phase space.



This Talk

What remains to be done?

Little attention has been paid to the spin of the fermions.

I The role of spin orbit coupling in the dispersion relation.

I Improving analytic intuition for the damping term in the
dispersion relation.



Part I: Spin Orbit Coupling



Spin Orbit Coupling

Nonrelativistic 2D electron gas in a transverse E field:

Spin orbit coupling: The electron feels a magnetic field in its own
rest frame that produces an energy splitting between the two spin
states.



The Rashba Hamiltonian

H =
k2

2meff
− λ~σ · (ẑ × ~k)− µ ,

λ is the Rashba coupling constant, µ a chemical potential, ~σ the
Pauli matrices, meff the electron effective mass, and ẑ the unit
vector perpendicular to the gas.

green arrows:
momentum

red arrows:
spin
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(a) The dispersion relation in the boundary theory for a bulk fermion
with charge times chemical potential divided by temperature
µq/4πT = 25 and mass times AdS radius mL = 2. (b) The dispersion
relation for a fermion with a Rashba type coupling. The Fermi surface in
both cases is indicated by the dashed line.



Bulk Perspective

z

Vk,m

z1 z2

z3

horizonboundary

E

I z1, z1, and z3 are classical
turning points for the
electron trajectory.

I There exists a quasibound
state with a small
imaginary part given by
the tunneling probability
through the potential
barrier to the horizon.

I Explain the origins of this
potential later.

The Point: An electron moving into or out of the page in the
potential well will feel a spin orbit coupling.



Translating the Bulk into the Boundary

We have discussed the gravitational (bulk) behavior. How does
this behavior map to field theory (boundary) quantities?

I These quasibound states are called quasinormal modes
(QNMs). QNMs describe the ring down of excited black holes.

I An entry in the AdS/CFT dictionary (Son and Starinets):
The location of the QNMs in the complex frequency plane is
also the location of poles in the field theory Green’s functions.
The dispersion relation for a QNM with a small imaginary part
can be interpreted as the dispersion relation for a quasiparticle
in the field theory.



Field Theory Interpretation

The field theory interpretation is troubling.

I Field theory should be intrinsically 2+1 dimensional with no
electric field, nonzero density ρ and nonzero temperature T .

I If spin is related to angular momentum, it’s meaningless to
say the spin points in the x or y direction.

I For strange metals, one naively anticipates that spin should be
essentially an internal SU(2) symmetry of the electrons, that
the Fermi surface should be spin degenerate. There is no
strong E field.



A Way Out

Natural to expect a modified Dirac equation

[(1 + F (ω, k))pµ + (−µ+ G (ω, k))uµ] γµψ = 0 ,

where pµ = (ω, kx , ky ) and k =
√

k2
x + k2

y .

I Dirac equation for free massless 2+1 dimensional electron
recovered by setting G = F = µ = 0.

I µ 6= 0 and T 6= 0 identifies a preferred frame uµ = (1, 0, 0).

I Underlying theory is conformal, mbare = 0.



Further Along the Way Out

[(1 + F (ω, k))pµ + (−µ+ G (ω, k))uµ] γµψ = 0 .

vs.

H =
k2

2meff
− λ~σ · (ẑ × ~k)− µ ,

I Choosing gamma matrices

γt = iσz , γx = σx , γy = σy ,

and setting F = 0 = G recovers the Rashba Hamiltonian
without the the k2 term and with λ = 1.

I To add the k2 term, guess G (ω, k) ∼ k2 which is allowed by
the symmetries.

I For more bands, posit several species of massless fermions
with different charges, µ→ µqi .



Where did this Schrödinger potential come from?

One can rewrite the Dirac equation as a Schrödinger equation for a
single (in this case upper) component of the spinor:

−φ′′±(z) + V±k,m(z)φ±(z) = 0

where

Vk,m(z) =
1

~2

(
gzzm

2 − Z 2
−kZ

2
k

)
−1

~
m
√
gzz ∂z ln

[√
g zzZ 2

k

]
+ Zk∂

2
z

1

Zk
,

and

Zk = (gzz)1/4
[√
−g tt(ω + qAt)−

√
g xxk

]1/2
.



The Charged Scalar for Comparison

The Laplacian operator:

(DµD
µ −m2)Φ = 0 ,

Let Φ = e−iωt+ikxZ (z)φ(z) where Z =
√
gzz(−g)−1/4, then we

obtain

−φ′′(z) + Vs(z)φ(z) = 0

where

Vs(z) =
1

~2

(
gzzm

2 − Z 2
−kZ

2
k

)
+ Z∂2

z

1

Z
.

Same as the fermion potential to leading order in ~.



Part II: Spin and Damping

Thus far we have focused on the real part of the dispersion relation.
The imaginary part gives the quasiparticles a lifetime, hopefully.

We are assuming a time dependence of the form e−iωt so ω had
better be in the lower half plane.



The Position of Quasinormal Modes
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I Holographic superconducting instability caused by the motion
of a scalar QNM into the upper half plane. This instability is
called super radiance, gravitational analog of BEC.

I Fermions do not super radiate. QNM’s in lower half plane.
I McGreevy et al. were able to see this numerically and show it

in the ω → 0 limit at T = 0. Can we see this distinction more
generally from a WKB type analysis of the Schrödinger
problem?



z

Vk,m

z1 z2

z3

horizonboundary

E

I For the scalar, WKB analysis implies QNM’s are in the lower
half plane when Reω > 0 and in the upper half plane when
Reω < 0.

I For the fermion, WKB would seem to indicate the same.



Fermions vs. Scalars

However, for the fermion, Zk will vanish when ω < 0. If Zk = 0 at
z = zs , then Vk,m ∼ 3/4

(z−zs)2 .

horizon

Vk,mHzL
Ω<0

zs

The connection matrix at z = zs forces the QNM’s into the lower
half plane.



Conclusion and Discussion

I Spin-orbit coupling leaves a strong and recognizable imprint
on the dispersion relation of the quasiparticles in the boundary
field theory.

I Similar dispersion relations can be found in quantum wells and
topological insulators. Can we compute a spin Hall
conductivity?

I Are these spin effects important in heavy fermions and high
Tc superconductors? The anti-ferromagnetic parent state
suggests maybe yes.

I WKB is a useful tool for gaining a better qualitative
understanding of the fermions (and scalars) in the dual gravity
description.

I AdS/QCD is a game played exclusively with bosonic fields.
Can we / should we add fermions to the mix?


